
NXApp, Winter 1993 (Volume 1, Issue 1).
Copyright ã1993 by NeXT Computer, Inc.    All Rights Reserved.

Branching Out With Dynamic Loading

written by Andrew Vyrros

Dynamic loading is a powerful technique for structuring NEXTSTEP
programs. It
gives software developers a new set of tools and a greater range of
flexibility in
creating applications. It also enhances a software vendor's ability to
support multiple configurations and frequent updates. There are several
ways to apply dynamic loading
to typical NEXTSTEP projects, and technical issues to consider with
each.

The pressure is on. Your application had been selling well, but a competitor just
added a killer new feature. Customers are complaining and threatening to defect.
Time to panic? No, you just mail out a small package, customers do a simple
drag-and-drop, and you've got the hottest app again.
The stress meter is rising. Your biggest client needs to build a custom version of
your program, but you're not too keen on giving them all your sources. The cue
to take a long vacation? Nah, you send them a few header files and some
instructions, and they're off and running.

These may sound like scenes from a developer's fairy tale, but you can arrive at
the same happy endings through the magic of dynamic loading.

PIECING IT ALTOGETHER
Simply put, dynamic loading is the process of adding external modules of code to
a running program. That may sound simple, but it has some far-reaching
consequences: First, it lets you add functionality to a program without
recompiling it. This means that applications easily gain new tools and areas of
usability. Second, it lets you change the functionality of a program each time it
runs. Since youÐor the userÐcan choose which modules to load, the capabilities
of a program can be tailored to a particular need.
When combined with object-oriented programming, dynamic loading really shows
its potential. Used with a late-binding language like Objective C, dynamic loading
allows you to add to the class hierarchy at run-time. You can subclass existing
classes or add altogether new classes. The result is that your program can
acquire new objects and entities, bringing extra areas of functionality that you
might not have envisioned when you first developed it.

WHAT'S THE POINT?
So dynamic loading is an interesting technique, but what practical value does it
add to your NEXTSTEP projects? Because it allows you to choose your program's
code modules at run time, dynamic loading can change the way you think about
applications and functionality. With a little imagination, you can envision the
benefits you'll realize.

Dynamic value
Some of these benefits you've likely already considered. Probably the most
prominent benefit is that dynamic loading makes your application customizable.
This means that users can extend the functionality of your program to suit their
needs; all they have to do is add new modules. For
example, you can supply these modules as an adjunct to the basic set. Or, if you
publish the API, customers and third parties can create new modules, adding

value to your application.
Similarly, dynamic loading gives you increased flexibility to manage configuration
and packaging. Depending on which modules you put inside the app wrapper,
you can instantly create different versions of your application. This makes it easy
to create basic, advanced, and custom versions.
It's as simple as dragging and dropping a few files, without writing any new code
or recompiling anything.
This flexibility also extends to bug-fixes and upgrades. If new code is restricted to
a few modules, then you can distribute just the fixed modules rather than the
entire package. Because these modules are much smaller than a whole
application, they're easier to fit on a single floppy disk or into an e-mail message.
Or, if customers want to upgrade from the basic version of your application to the
advanced version, they don't need to re-install the entire packageÐthey simply
drag the advanced modules into the app wrapper and restart the app.
A number of performance improvements can result from using dynamic loading,
too. Most noticeably, the application should launch more quickly. This is because
dynamic loading is usually paired with lazy initialization: The application only
loads modules as they are needed. Immediately after the app is double-clicked,
only a few modulesÐperhaps noneÐneed to be loaded, so the program launches
very quickly. Of course there will be small performance hits as additional modules
are needed and loaded, but quick launch speed often has the biggest impact on
user perception.
As a side effect of this lazy initialization, there is another benefit: lower memory
consumption. Because modules are only loaded as they are needed, the modules
that aren't loaded don't consume any memory. Since users typically use a small
subset of an application's functionality
in one sitting, the memory consumed is a fraction of what would be needed to
hold an entire, non-dynamic version of the program. This means reduced virtual
memory consumption, which improves performance for your application and
throughout the system.

Programmer pluses

In addition to all the product benefits that result from dynamic loading, there are
a number of development boons. These aren't a direct result of dynamic loading,
but they can have a great impact on your programming productivity.
For example, using dynamic loading in your projects can vastly reduce your
linking time. The reason is that code for a dynamic module doesn't need to be
linked with the main executable. Instead, it's merged into a single relocatable
object file. Because this involves only the symbols referenced in the dynamic
module, it proceeds much more quickly than linking the entire
application. So if the files you are working on are restricted to a dynamic module,
your builds finish much more quickly. In addition, since the main executable
doesn't change, the debugger doesn't need to reload those symbols. This means
that you can immediately restart your application. The bottom line is much faster
passage from edit through compile to test and debug.
Using dynamic loading can also improve the architecture of your code. This is
because dynamic loading forces you to identify the essential areas of
functionality and to distribute them among the main application and the loaded
modules. Then you must define clear APIs so that the loaded modules and the
main app can interact properly. As a result, you have to spend time aligning your
class hierarchy to the natural functional areas that your modules will support.
This should bring the rewards of logically designed classes and carefully
structured code.
Finally, dynamic loading can help you organize your development efforts. The key
is placing each module into a separate Project Builder bundle project. Each
bundle project holds all the associated source files, as well as the required
resources such as images and interfaces. Because an individual module consists
of a small set of functionally related files, these bundle projects become
separate, manageable development units. And since each module gets its own
subproject directory, you can easily work on it independently, without the
distractions of the rest of the project.

There are some important caveats regarding the time and space needs of dynamic programs.
These are discussed later on, along with other tradeoffs.

STRUCTURING YOUR APPLICATION
Now that you're sold on the benefits of dynamic loading, you'll need to decide
how to incorporate it into your projects. Naturally, the way you use dynamic
loading depends mostly on the needs of your application. But there are a few
typical architectures and techniques for dynamic programs that you can use as a
starting point for application design.
The fundamental distinction between dynamic architectures is the role and
complexity of the modules as opposed to that of the main application. The three
main prototypes discussed below vary from simple, single-object modules
controlled by a large, complex application to elaborate, multi-object modules
used by a small, vestigial app.

This article deals primarily with symmetric module structure: a group of dynamic modules that
have more or less the same role and relationship to the main application. These modules have
divergent functionality but share the same end goal.
Some applications use an asymmetric module architecture. In this setup, each module is
unique and has a specific relationship to the main program. For example, an app might load
one module to operate a peripheral, and another to communicate over a network channel. You
can apply many of the concepts in this article to building this second kind of program.

Dynamically loaded tools
One likely configuration is an application with dynamically loaded tool modules.
The prototype here is Icon BuilderÐsee Figure 1. In this scenario, you have a main
application and a set of dynamically loaded tools, one per module. The main
application provides the bulk of the program functionality, such as interacting
with the user, managing data, opening and saving documents, and updating the
display. The tool modules, on the other hand, provide specialized functionality to
control or manipulate data in some way.
Dyna_Fig1.eps ¬

Figure 1:    A drawing program, like Icon Builder, with loadable tool modules

This architecture is relatively straightforward to create. When the user chooses a
tool, the application loads the corresponding module. (More on the mechanics

later.) This adds a single new entry to the Objective C class hierarchy. Then an
instance of this tool class is created. The application maintains a list of these tool
objects, and allows the user to select the current one. The current tool then
performs whatever functionality is desired, typically by responding to requests
from the application or from user interface objects.

Functional groups
An application with loadable functional groups is similar to an application with
loadable tools. Typical of this is Interface Builderä with its palettes, like in Figure
2. In this scenario, the application has functional modules that are loaded at run-
time. As before, the main application supplies most of the basic functionality, and
the modules provide the customized parts. Instead of just a single tool per
module, though, functional groups contain a number of related objects. These
objects can act either as tools for manipulating data, or as the building blocks of
the data itself.

Dyna_Fig2.eps ¬

Figure 2:    A design application similar to Interface Builder, with Palettes implemented as
functional group modules

Laying out this kind of framework takes a bit more effort. As in the previous case,
the main application loads a primary class and creates an instance for each
module. Each primary object acts as a kind of entry point for its module. It gives
the main application access to the rest of the classes in the module. The primary
object can do this either by creating instances and handing them back to the
main application, or by returning the class objects directly to the app and letting
it create the instances. Some of these subordinate objects might be used to
inspect or manipulate data, similar to the tool objects in the first example. These
situations will probably only need a single instance, most likely owned by the
module's managing object. Other objects may be the sort that represent entities
or chunks of data. In this case the application probably creates multiple
instances, which it puts into a separate container such as a document object.

Fully independent modules

A third type of dynamic application is made up of fully independent modules.
Here the prototype is PreferencesÐsee Figure 3. This scenario takes functional
groups to the extreme; there really is no application without the loaded modules.
The main application provides only the most basic of resources, perhaps a menu
and a window in which to display the interface for a module. The loaded modules
are essentially independent programs that operate within the main app.
Independent modules are similar to functional groups. The main program loads
the modules as needed and instantiates a single primary object. But because the
modules function as independent programs, they require very little coordination
from the main app, other than to select the current module. The module's
primary object takes care of everything else, including creating subordinate
objects, interacting with the user, and performing its specific functions.

Dyna_Fig3.eps ¬

Figure 3:    A program reminiscent of Preferences, with independent modules.

Mix and match
It's important to realize that these three general architectures are not mutually
exclusive. They can be mixed and combined as you see fit. For instance, your app
could have both a set of loadable tools and a separate array of loadable
functional groups. Or your program could be made up of independent modules,
some of which supply their own assortment of loadable tools. The goal is to
design an architecture that fits the natural form of the application.

Communication
Once you have chosen the overall structure of your dynamic application, you
must make a few more decisions about architecture. Your primary task is to
determine how the main application will communicate with the dynamically
loaded modules. This is important because the main application shouldn't make
any assumptions about which modules will be loaded on any particular launch of
the program. It should treat all of the modules as abstract entities that
implement their own version of some functionality. Therefore, since it doesn't
know anything specific about any of the modules, it must use the same form of

communication with all of them.
There are a couple of ways to work this out. One is to use Objective C protocols.
You can define a set of protocols for the objects in the modules and another for
the objects in the main application. The two parts of the program then
communicate by using methods from the protocols. By seeing that all classes
conform to the appropriate protocol, you establish the communication system
and ensure that all classes implement the required methods. This approach
makes sense when the different modules have little or no functionality in
common.

Protocols are a language construct added in NEXTSTEP 3.0 that let you specify the methods a
class implements without saying anything about the class's inheritance.

The other option for structuring communication with dynamic modules is to
provide abstract superclasses. The abstract classes implement the skeletal
functionality that you expect from the objects in the modules. Then the modules
create subclasses of these abstract classes to fill in the specific functionality that
they want to provide. This way, the classes in the modules are always subclasses
of your own classes, so that you define their basic behavior and can
communicate with them accordingly. Using abstract superclasses is best when
the modules share a lot of common functionality: The overlapping parts are only
implemented once, by the abstract superclass in the main app, while the
subclasses in the modules only need to provide their specific variations.

SWEATING THE DETAILS
Once you've designed your architecture for dynamic loading, you're ready to
start building the application. There are two areas on which you'll be working.
First, you handle the mechanics of setting up a Project Builder project for a
dynamic application. Once you've created this infrastructure, you can write the
code to implement your app.

Setting it up

Dynamic applications have two main conceptual components: the main, static
core, and the dynamically loaded modules. Each of these is built from a set of
class implementations and other source files. If you've worked out your
architecture, you should have a good idea how you want to distribute these files
among the components.
The main application is built the same way as a conventional app. You use Project
Builder to create a project for the application, then add your source files and
other resources to the project. Project Builder manages the resources and
massages the Makefiles for you. When you build the project, your sources get
compiled into a single executable.
Dynamic modules are a bit different. Each dynamic module has its own loadable
code file. This code file is constructed by compiling the classes and other sources
for a module and linking them into a single relocatable file. To make this happen,
you use Project Builder to create bundle projects for each of your dynamic
modules. Then add the sources and other files for a module to its bundle project.
When you build the application, the Makefiles build the bundle projects along
with the main project. These magic Makefiles compile every module's sources
and link them into individual loadable code files, one per module. Then they put
the code file and other resources for each module into a separate file package
inside the application's file package.

Making it run
With the proper setup for a dynamic project established, you're ready to write the
code that does the actual loading. The task of dynamic loading can be broken
down into three steps: locating the modules in the filesystem, loading the
modules into the Objective C class hierarchy, and instantiating the objects.
Fortunately, NEXTSTEP insulates you from most of the nitty-gritty by supplying
much of the key functionality with high-level API. The preferred point of access is
the NXBundle class. NXBundle is a utility class with methods for retrieving
resources within file packages. In particular, NXBundle knows about dynamic
modules and how to load them into programs. As long you keep each dynamic
module inside a separate file package, NXBundle greatly simplifies the entire

dynamic loading process.

For more in-depth information about the mechanics of dynamic loading and the NXBundle
class, see NEXTSTEP Object-Oriented Programming and the Objective C Language and the
NXBundle class description in NEXTSTEP General Reference.

Locating the modules is a simple matter of finding all the file packages with the
desired extension, then creating a single NXBundle instance for each package.
NXBundle takes the path to the file package as its initialization argument. Then
you store the bundles that you create in a List:
char modulePath[MAXPATHLEN+1];
NXBundle * newBundle;

while ([self getNextModulePath:modulePath])
{

newBundle = [[NXBundle alloc] initForDirectory:modulePath];
[bundleList addObject:newBundle];

}

Once you've created a bundle, you've got a handle on the resources in the file
package. But NXBundle doesn't actually load any resources until you explicitly
request them. To request Objective C class resources, you ask the bundle for its
principal class. (NXBundle assumes that the first class in a module is the principal
class; this is determined by the first class listed in Project Builder's Classes
browser.)
NXBundle * currentBundle;
Class primaryClass;

currentBundle = [bundleList objectAt:0];
primaryClass = [currentBundle principalClass];

If this is the first time you've asked for the class, NXBundle loads the relocatable
file into the Objective C class hierarchy, then gives you the class. You should
check the capabilities of the newly loaded class to make sure you got what you

expected. Then use the class object to create an instance. In the case of a
module with a single tool class, the process might look like this:
Class toolClass;
id <ToolMethods> newTool;

toolClass = [currentBundle principalClass];
if ([toolClass conformsTo:@protocol(ToolMethods)])
{

newTool = [[toolClass alloc] init];
[self putToolToWork:newTool];

}

For a module with multiple classes, like a palette, it's just slightly more complex.
When NXBundle loads the principal class, it actually loads all the classes in the
module since they're all in a single file. Once you've created an instance of the
module's primary object, you can use it to get at the rest of the classes in the
module:
Class paletteClass;
id <PaletteMethods> newPalette;

paletteClass = [currentBundle principalClass];
if ([paletteClass conformsTo:@protocol(PaletteMethods)])
{

newPalette = [[paletteClass alloc] init];
paletteInspector = [paletteManager inspector];
[self displayItemView:[newPaletteManager itemView]];

}

In the Palette class, you provide the access methods for the contents of the
module:
- inspector
{

if (!inspector)
inspector = [[MyInspector alloc] init];
return inspector;

}

- itemView
{

NXBundle * myBundle;
char nibPath[MAXPATHLEN+1];

if (!itemView) // itemView is an outlet in a nib
{

myBundle = [NXBundle bundleForClass:[self class]];
[myBundle getPath:nibPath forResource:"MyItemView" ofType:"nib"];
[NXApp loadNibFile:nibPath owner:self withNames:NO];

}
return itemView;

}

Freedom of choice
Of course, a solitary palette or tool isn't very exciting; the whole point is to have
several that the user can choose from. Ordinarily, you'd create all the tools and
put them in a List, with each tool's position in the List corresponding to the tags
in an interface element like a Matrix or PopUpList.
Unfortunately, this won't work if you're also using lazy initialization and only
loading modules as they are needed. In that case, you wouldn't immediately
have a tool to put at every position of the List. Instead, you'd need to have some
blank placeholder in the tool List to stand in for a tool that hasn't been loaded
yet. But since you can't add nil objects to a List, you're stuck.
One alternative to using List is to use Storage, which allows null elements. Then
you can write a method that returns a tool at a particular position, creating the
tool if necessary. The C casting required by Storage may look a bit cryptic, but it
does the right thing:
- (id <ToolMethods>)toolAtIndex:(int)index
{

id <ToolMethods> tool;
NXBundle * bundle;
Class toolClass;

tool = *((id <ToolMethods>) *)[toolStorage elementAt:index];
if (!tool)
{

bundle = [bundleList objectAt:index];
toolClass = [bundle principalClass];
if ([toolClass conformsTo:@protocol(ToolMethods)])
{

tool = [[toolClass alloc] init];
[toolStorage replaceElementAt:index with:(void *)(&tool)];

}
}
return tool;

}

Another solution is to create a subclass of NXBundle that adds an instance
variable to store an object created from a loaded class. Then the main application
could just use a single List of these special NXBundles both to track the modules
that the program might load and to hold on to the primary objects after they are
loaded and instantiated:
- (id <ToolMethods>)toolAtIndex:(int)index
{

ToolBundle *toolBundle;

toolBundle = [toolBundleList objectAt:index];
return [toolBundle tool];

}

The first time a tool is requested, ToolBundle loads its module and instantiates
the primary object:
- (id <ToolMethods>)tool
{
 Class toolClass;

 if (!tool)
 {
 toolClass = [self principalClass];

 if ([toolClass conformsTo:@protocol(ToolMethods)])
 tool = [[toolClass alloc] init];
 }
 return tool;
}

The approach you choose will depend on the needs of the application and your
personal preference. But from this point you're in the clear. Once you have a
standard technique to access your loaded objects, you've built the structure for a
dynamic application. The remainder of your code should be essentially the same
as for a traditional app.

KEEPING IT RUNNING
Of course, nothing in life ever comes totally free. Like any other engineering
technique, dynamic loading brings a number of tradeoffs and potential pitfalls. If
you plan for these in advance, your coding will proceed much more smoothly.

Document dilemmas
One of the key issues of dynamic loading is dealing with documents and archived
objects. The difficulty arises when the user tries to open a document that
contains instances of a class from a bundle that hasn't been loaded yet.
As an example, imagine an application for designing automobile engines. Say
that a user creates an engine using fuel injectors from the fuel system module.
When the user saves the document, the injector objects get archived in a file.
The next day, when the user tries to re-open the document, if the fuel system
module hasn't been loaded yet, there'll be trouble. The application won't be able
to instantiate the objects in the file, since it doesn't know about the FuelInjector
class.
There are a number of possible solutions to this dilemma. The worst-case is to
require your users to make sure that the appropriate modules have been loaded
whenever a document is opened. Users might force the loading of a module by
selecting its icon from a matrix of available modules, or by explicitly requesting
that it be loaded. If a document fails to open because of missing module classes,

you can alert the user to try again after loading the right module. This is a rather
unpleasant solution that puts a large burden on your users, but it works.
A more elegant approach is to record the names of the necessary modules in a
file inside the
document package. (The NXBundleÐand thus the module nameÐfor a particular
object can be determined by asking [NXBundle bundleForClass:[widget
class]].) The application can consult this file before it attempts to unarchive any
of the objects in the document. Then it can load all of the required modules
before trying to create any objects from the document. This
solution is much more elegant and requires no user intervention.
Unfortunately, this approach relies on the names of modules. If the name of a
module changes, or if classes are redistributed into different modulesÐfor
instance, if FuelSystem.automodule is split into FuelInjectors.automodule
and Carburetors.automoduleÐthen users won't be able to read old
documents. If this seems likely in your application, you may want to consider a
refinement of this approach. Instead of storing a list of modules, you can write a
list of all the names of the specific classes required by a particular document.
Then the application can check that those classes exist before trying to read the
document. If any are missing, the application will have to find the corresponding
module so that it can load it. Rather than using trial-and-error, you
can put another list of class names inside each module package, and the
application can use these lists to find the appropriate module.
Of course, none of these techniques can solve the problem of missing modules.
For instance, suppose a user creates an engine design using some special pistons
from the new third-party Cosworth.automodule, then sends it to a colleague
for review. If the colleague doesn't have the new module, he won't be able to
read the document. Unfortunately, there's little you can do to prevent this
situation. Your only recourse is to notify the user of the situation and try to
provide
as much information as possible about the missing module so that he will be able
to track it down.

What's in a name
The problem of conflicting class names is also a concern. Because there is only a
single name-space for Objective C classes, dynamically loaded modules musn't
contain duplicate class names. If your application attempts to load a module
containing a class name already in use, then the loading of the entire
moduleÐnot just the offending classÐfails.
If you produce all the modules to be used with your application, then you can
control the naming of classes to avoid these clashes. But if you allow third parties
to provide modules, then you must be aware of this possibility. The instructions
with your API should mention this issue and instruct developers to be meticulous
in creating meaningful names with unique prefixes, to ensure that their class
names don't collide with others. As an additional precaution, you can use the
technique given earlier of listing class names in a separate file inside the module
package. Then your application can check these lists for name collisions and
choose the desired module to load.

Symbolically speaking
Dynamic loading involves an additional complication when it comes to symbol
tables. The
problem is that loadable code files, unlike regular executables, can't be linked to
shared libraries. Instead, the external references in loaded modules are resolved
through the symbol table of the main executable. This means that dynamic
modules can't use any symbols unless those symbols appear in the main
program's symbol table. To put it more explicitly, it means that dynamic modules
can't create instances or define subclasses of any classesÐyour classes or Kit
classesÐunless the symbols for those classes are included in the main
application's symbol table. Likewise, modules can't call any functionsÐin your
code or the shared librariesÐunless the symbols for those functions appear in the
main symbol table.
To reduce file size, applications usually are stripped of their symbol tables,
making dynamic loading essentially impossible. Fortunately, project Makefiles
take into account the special symbol needs of dynamic projects. If your project
includes bundle projects, the main executable retains its symbol table. By

default, this symbol table includes entries for all classes defined in the main
application, plus all classes in the libraries you link against. For functions, the
table has entries for all functions in the main application and any library
functions that the main application calls; it also has entries for all other functions
defined in any library member that includes a class definition or function that the
main application calls. This means that dynamic modules can use all of your
classes and all Kit classes, and can call your functions and most of the common
library functions.
Unfortunately, it's difficult to anticipate exactly which functions a dynamic
module will need to call. For instance, suppose you have a musical composition
app. As originally designed, this
application might not use many mathematical functions, so its symbol table
wouldn't include entries for functions like lgamma() and j0(). But if you later
wanted to supply a loadable module that analyzed musical waveforms, your
module might need these functions. To ensure that modules can call any library
functions, you can use the linker flag -all_load to force inclusion of all library
symbols in your main app's symbol table.

To use -all_load, add the macro OTHER_LDFLAGS=-all_load to the Makefile.preamble in
your main project.

The main issue here is the API you want to provide to loadable modules. If you
leave a complete symbol table, then modules will have access to all classes and
functions used by the main program. This may be undesirable if you have some
private classes that you don't want modules to use, or if there are library
functions that you want to prevent modules from calling. If this is the case,
assemble a list of symbols that loaded modules should be able to access. Then
use the -s option of strip to strip your main executable so that it provides the
desired API.
A secondary issue is the effect of the symbol table on the file size of your main
executable. The default symbol table mentioned above will increase the size of
your program roughly 110 kilobytes per architecture for the library symbols, plus
a variable amount for the program's own symbols.

If you link against additional libraries and load all library symbols, the size
penalty could easily double. But it's important to realize that this is the program's
static file size as it sits on the disk; the amount of virtual memory it consumes
when running is affected by a number of additional factors, discussed later.
However, if small program file size is a critical requirement of your application,
you might consider trimming the symbol table.

Traveling time and space
As noted earlier, dynamic loading can improve your application's launch speed
and reduce its memory consumption. But there is a subtle interaction at work
regarding the mechanics of dynamically linking code files. When a program is
launched, only the pages of code that are actually executed get swapped into
memory. This is very fast and efficient, because it limits memory consumption to
the minimum set of code a user needs on a particular occasion.
Dynamic loading throws a monkey wrench into the works. When the dynamic
loading system loads a module, it needs the symbol table of the main program to
resolve any external references in the loadable code file. So, the first time you
load a module, the system builds the memory image of the symbol table. To do
this, it must map the entire main executable into memory. This is
inefficient, because it swaps in all pages of code of the main application,
regardless of whether the user needs them. It also reduces performance while
the system is occupied constructing the table. The more symbols involved, the
longer it takes.
You can approach this problem from a couple of directions. One option is to make
the main program as small as possible by moving code to loadable modules. This
will minimize the number of pages in the main executable that the system is
forced to swap in when it builds the symbol table before the first load. However,
that may not be feasible for all applications.
The other option is to reduce the number of entries in the main program's symbol
table. This reduces the number of symbols that the system needs to process as it
constructs the table. But it's important to remember that these are the tradeoffs
you make after you choose dynamic loading.

Because of these caveats, you probably shouldn't use dynamic loading solely for
the potential performance enhancements. The compelling motivations for
dynamic loading are the flexibility, extensibility, and ease of maintenance it
brings to your projects. Performance wins are just a nice possible side effect.   

Odds and ends
There are a few other simple mistakes to watch out for the first time you try
dynamic loading. Plan your interface layout so that it can accommodate an
arbitrary number of loaded modules, not just the few that you expect to ship. If
you give your modules an extension other than the default .bundle, add that
extension to the list of extensions your application owns, so that the directories
will look like file packages in Workspace Manager. Make sure that your primary
class is the first one in each module's loadable file. If your app has multi-
architecture binaries, be aware that under NEXTSTEP 3.0 the main program will
run, but the multi-architecture modules won't loadÐonly modules created for
NeXT computers will load under 3.0.

CROSS-EYED AND PAINFUL?
If all this dynamic mumbo jumbo makes your head spin, relax. Working with
dynamic loading requires a bit of a conceptual shift, so it may take some time
before you are comfortable using it in your code. To help you get started, an
example project accompanies this issueÐa simple graphical display application
called DynaDoodle. It displays various dynamically loaded doodle modules. The
user can choose which module to display and adjust graphical characteristics of
the doodle.
In addition, we'll revisit dynamic loading in a future issue of NXApp. At that time,
we'll further probe the subtle technical issues and investigate some advanced
techniques. Until then, have fun exploring dynamic loading in your programming
projects.

Andrew Vyrros is Director of Development at Codeworks, an independent NEXTSTEP consulting
firm in San Francisco. His recent projects include a dynamically loaded data visualization

engine. You can reach him by e-mail at av@codeworks.com or by phone at (415) 626-7144.

DYNAMIC LOADING TERMINOLOGY

Some of the terms used in dynamic loading have multiple, overlapping meanings. To simplify matters, this
article gives a single, specific meaning to each term.

bundle An overloaded term that can mean loadable module, file package, or an instance of the NXBundle
class. In this article, a bundle always means an NXBundle instance.

bundle project In Project Builder, a kind of subproject that manages the source files and other resources
that are used to make a loadable module.

dynamic module See loadable module.

file package A directory that packages together a set of related resource files. In Workspace Manager,
file package directories appear as simple files. Also called a bundle.

loadable code file A kind of executable file that contains some compiled code, typically Objective C class
definitions. It's different from a normal executable file in that it's relocatable, which means it includes the
extra symbol information needed to join it with another executable. Also called a loadable object file or a
relocatable object file.

loadable module A chunk of resources that gets loaded into a program at run-time. Each loadable module
generally consists of two primary components: a loadable object file, and the accompanying resources such
as images and interfaces. Also called a dynamic module. Sometimes called a bundle, although a bundle can
contain any kind of resources, not just loadable code.

NXBundle A NEXTSTEP Common class used to access the resources inside a file package. NXBundle
knows about loadable module packages and how to load code files into applications.-AV

WHERE TO STORE AND FIND MODULES

Before you can load any dynamic modules you'll need to find them in the file system. At the very least, you

should look for modules inside of the application's .app file package. To make it easy for users to add new
modules to the system, you should also establish some other standard locations where you'll look for
modules. There are no hard rules, but a de facto standard has emerged that you'll probably want to adhere
to.

The system is to specify an identifying filename extension for your modules and identify a subdirectory within
the standard library directories where you expect modules to be placed. Typically this subdirectory has the
name of the application. You search the library directories in this order: the user's home library, ~/Library;
the site's library, /LocalLibrary; and the NeXT-supplied library, /NextLibrary. Finally, after the library
directories, you look in the application file package for the modules that come with the application.

For instance, say you have an app called Engine Builder that loads modules of auto parts. Using this
system, you would search for all the modules with extension .automodule in the following directories:
~/Library/EngineBuilder, /LocalLibrary/EngineBuilder, /NextLibrary/EngineBuilder, and
EngineBuilder.app. This system is analogous to the one NEXTSTEP uses for fonts and other resources. It
allows sites to install modules that enhance or override the default configuration, and it lets individual users
provide their own, private modules.

Depending on your application's needs, you may want to use a slight variation on this plan. In this situation,
you split your resources into further subdirectories within your application's directories. As an example, you
might have Engine Builder look for .autotool files inside of the EngineBuilder/AutoTools directories in the
user, site, and NeXT-supplied Library directories, and load .automodule files from the
EngineBuilder/AutoModules directories also in the set of Library directories. This approach can be helpful
when your application has a lot of resources to manage.ÐAV

LAYING OUT MODULES WITH PROJECT BUILDER

Dynamic modules often require accompanying files in addition to the loadable code file: resources like
images, interfaces, and string tables that are needed once the modules are loaded. To keep your modules
organized, group the files of each module into a file package. If you lay out your modules this way, you can
use the NXBundle class to do your loading, and Project Builder for your file management.

NXBundle expects dynamic modules to look like this: The file package should have a name that includes an
identifying extension. Inside the package should be the loadable code file, with the same name as the file
package but without the extension. For instance, if your module is named Engine.automodule, the code file
should be named Engine.automodule/Engine. Additional resources like images and class name lists can

also go inside the file package. Localized resources such as interfaces and string tables should be in .lproj
subdirectories within the package.

Project Builder automatically sets up your modules just this way. The technique is to create a separate
bundle project for each dynamic module. Then add the classes and resources that you want to be part of a
particular module to the corresponding bundle project. The generated Makefiles do the rest of the work.

To add a new bundle project to your application project, in the Files view choose New Subproject from the
Project menu. Specify the name of the new module without an extension and select the type Bundle. This
adds a new bundle project as a subproject of your main project. To add resources to a bundle project, select
it in the Files view and drag-and-drop it.

Project Builder can also control which class in inserted first by the linker into the module's loadable code file.
This determines which class NXBundle identifies as the principal class, the entry point to the rest of the
module. To make a class the first class, control-drag it to the top of the list in Project Builder's Classes
browser.

When you build the project, the Makefiles perform all the tasks necessary to create a properly configured
module. All files in the Classes and Other Sources lists are compiled and linked with the appropriate flags
into a single loadable code file with the proper name and location. Localized resources are copied to the
appropriate .lproj directories and other resources are copied to the file package. The package itself is
inserted as a subdirectory inside the main application package.

By default, the Makefiles give module packages the extension .bundle. Directories with this extension look
like generic module files in Workspace Managerä. If you want a unique look for your modules, you can
supply your own extension. Starting in 3.2, Project Builder allows you to set the extension for a module. In
3.0 or 3.1, you'll have to use some custom rules in your Makefile.preamble to make the change. If you do
this, add the new extension and icon to the application's list of file types to make your module packages
appear as custom module files in Workspace Manager.ÐAV
__
Next Article NeXTanswer #1504 An Informal Approach to Object-Oriented
Design
Previous article NeXTanswer #1499 Automated Testing of NEXTSTEP
Applications
Table of contents

http://www.next.com/HotNews/Journal/NXapp/Winter1994/ContentsWinter1994.html

